
206998

Final Report
NASA NAG 1-1861

Development of Advanced Laser Diode Sources

J.J. Coleman and G.C. Papen
Microelectronics Laboratory

University of Illinois
208 North Wright Street

Urbana, IL 61801
(217) 333-2555 voice
(217) 244-7645 FAX
jcoleman @ uiuc.edu

/Z_A/,O L-

prepared for:

Carl J. Magee
NASA Langley Research Center

Remote Sensing Technology Branch
Aerospace Electronic Systems Division

Mail Stop 474
Hampton, VA 23681
(804) 864-1608 voice
(804) 864-8675 FAX

January 31, 1998

This paper reports the results of the semiconductor lidar project for NASA Langley Research

Center through the end of the program. The summary of results is contained in the two

attached reprints



IF.BEPHOTONIC$TECHNOLOGY LETFERS, VOL. 9. NO. .3. MARCH 1997 285

Asymmetric Cladding InGaAs-GaAs-A1GaAs

Ridge Waveguide Distributed Bragg Reflector

Lasers with Operating Wavelengths of 915-935 nm
S. D. Roh, J. S. Hughes, R. M. Lammert, M. L. Osowski, K. J. Beemink,

G. C. Papen, and J'. J. Coleman, Fellow, IEEE

Abstract--The design and operation of InGaAs-GaAs--AIGaAs
asymmetric cladding ridge wavegnide distributed Bragg reflector
lasers is presented. Targeted for the remote sensing of water
vapor with absorption lines in the A ~ 930 nm _x.g{on, these

devices operate CW with threshold currents as low as 11 mA and

slope efficiencies as high as 0.37 W/A. They also operate with over
30-rib side-mode suppression, and the typical CW characteris_c
temperature, To, is 95 K.

Index Terms--Distributed Bragg reflector lasers, optical spec-
troscopy, ridge waveguides, semiconductor lasers.

I. INTRODUCTION

INGLE-FREQUENCY laser diodes such as distributed
feedback (DFB) lasers and distributed Bragg reflector

(DBR) lasers have important applications in communications
and spectroscopy. One spectroscopic application is optical
remote sensing systems designed to track pollutants and green-
house gases. Solid-state sources and sources with external

gratings are unsuitable for mobile systems because they are
complex, bulky, and require precise alignment. DFB and
DBR semiconductor lasers, however, provide relatively sim-

ple, compact, and robust single frequency emission over a
large temperature and current range.

Optical sensing of atmospheric water vapor, the most abun-

dant of the greenhouse gases, has recently received great
attention [1]. Water vapor has a strong absorption line near
A ~ 930 tun, a wavelength easily accessible by InGaAs--GaAs

lasers. Achieving good performance near this wavelength is
more difficult, however, due to the small confinement energy
between the InGaAs quantum-well (QW) energy state and the

GaAs barriers. The confinement energy can be increased by
using low composition AIGaAs barriers in place of GaAs,
however, the poor interface quality between the InGaAs and

AIGaAs layers [2] makes this structure not ideal for high
performance lasers. As a solution, thin GaAs step layers can be
inserted between the InGaAs QW and the AIGaAs barriers to

improve the interface quality. InGaAs-GaAs-A1GaAs laterally
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Schematic diagram of the epitaxial layers for an asymmetric cbdding

coupled DFB lasers with A = 935 nm have been reported [3].

However, the weak coupling of the optical mode to the gratings
in these devices required antireflection (AR) coatings on both

facets to suppress the Fabry-Perot modes. In addition, because
of the small coupling coefficient (_), long cavity lengths (L)
of I and 1.5 mm were needed to achieve _L products of 0.59

and 0.87, respectively.
Strong coupling can be achieved by etching surface grat-

ings directly above the waveguide, increasing the interaction
between the optical mode and the gratings. Second order

gratings above the waveguide of an asymmetric cladding
separate confinement beterostructure (SCI-I) DBR laser with
a thin upper cladding have been shown to provide adequate

coupling even with shallow gratings depths (<0.25/zm) [4]. In
this letter, we report the continuous wave (CW) operation of
asymmetric cladding InGaAs--GaAs-AIGaAs ridge waveguide
('RW) DBR lasers with emission wavelengths of 916, 924, and
934 rim.
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II. DEVICE DESIGN AND FABRICATION

The epitaxiallayersfor the asymmetriccladdingSCH

were grown by atmospheric.pressuremetalorganicchem-

icalvapor deposition(MOCVD) in a verticalreactoron

a (100)GaAs:n+ substrate.A schematicdiagramof the
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286 IEEE PHOTON1CS TECHNOLOGY _. VOL 9, NO. 3. MARCH 1997

TI_a_

I
inG_s-GaAs-AIGaAsactivelayerJ

AIGaAs:n ]GaAs:n

Fig. 2. Schematicdiagramof a RW-DBRlaser.

epitaxial layers is shown in Fig. l. The laser structure consists
of a 1.O-#m Alo.eOa0.,As lower cladding layer, a 700-]_
Alo.2Gao.sAs lower barrier layer, an 80-A Ino.z3Gao.s_,As QW

surrounded by symmetric 20-A GaAs step layers, a 700-A

Alo.2Gao.sAs upper barrier layer, a 0.3-#m Alo.sGao.4As up-
per cladding, and a 0.1-/_m GaAs cap layer. The Alo.eGao.4As

lower cladding layer was grown at 800 °C, but the growth
temperature of the A]o.2Gao.sAs barrier layer was lowered

to 720 °C in order to reach the growth temperature of the
active region, 625 °C,, without incorporating a long pause

step during the growth. T'he growth temperatures of the upper

barrier, upper cladding, and the cap layers were 720 °C,
800 °C, and 650 °C, respectively. After the growth, silicon

dioxide was deposited by plasma enhanced chemical vapor

deposition. Direct write electron beam lithography was used to

write second-order gratings with periods of 288, 291, and 294
nm in PMMA. The gratings were transferred into the silicon
dioxide using Freon 23 reactive ion etching (RIE). SIC14 RIE

[5] was used to etch the gratings into the epitaxial layers to

an etch depth of 240 nm and with a duty cycle of ,-,30%.
The _ of the DBR is found experimentally to be 190 cm -z,

significantly higher than the previously reported s [4], 105
cm-z, for an InGaAs-GaAs asymmetric cladding RW device

with second order gratitlgs. This higher _ is due to the deeper
grating etch into the upper cladding. The remaining processing

steps are similar to those previously reported [4]. Fig. 2 shows
a schematic diagram of the [nGaAs-GaAs-AIGaAs RW-DBR
laser. The ridge width, gain region length, and DBR length

are 4, 500, and 100/an, respectively.

Ill. RESULTSAND DISCUSSION

All of the devices were tested CW with a heat sink temper-
ature of 20 °C maintained by a thermoelectric cooler except
for the Fabry-Perot R.W-lasers which were not heat sunk.

Shown in Fig. 3 are the longitudinal mode spectra of the
RW-DBR lasers, measured with an unbiased DBR section at

output powers >5 raW. The three different grating periods
288, 291, and 294 nm result in the lasing wavelengths of

916, 924, and 934 m, respectively. Over 30-dB side-mode

suppression is observed for all three wavelengths. Fig. 4 shows
the CW optical output powers measured from the cleaved
facet as a function of the gain section current for the three
devices mentioned above. The threshold currents for the _ =

916, 924, and 934 nnt devices are 15, 18, and 11 mA,

respectively. The slope efficiency, for output powers < 10 roW,
of the A = 934 nm device is 0.37 W/A, while the A = 916
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Fig. 3. Longitudinal mode spectra of RW-DBR lasers with second-oaier
grating periods of (a) 288 nm, Co) 291 nm. and (c) 294 am. Specu'a were
taken at output powers >5 mW.
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Fig. 4. Output power from the cleaved facet versus gain section current of
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10 eC increments.

nm and 924 nm devices both exhibit slope efficiencies of

0.33 W/A. For comparison, Fabry-Perot RW lasers fabricated
from the same material lased at _, ,-, 937 nm with threshold
currents as low as 12.2 mA with a slope efficiency of 0.19
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W/A. Fig. 5 shows light versus current (L-/) characteristics
of a A ,-., 935 nm device measured at temperatures from

l0 °C to 50 °C in increments of 10 °C. The typical CW
characteristic temperature, To, for a A _,, 935-nm device is
95 K over the temperature range of 5 °C to 60 °C. In general,

the performances of the A ,-_ 935-nm devices were the best
among the three grating periods, followed by the A -,, 925-
nm devices, then by the A ,,_ 915-nm devices. This trend can

be accounted for by the decrease of the confinement energies
and the increased separation of the Bragg wavelength from
the peak gain wavelength for the A -,, 925 nm and the A ,_
915-rim devices.

IV. CONCLUSION

The design and operation of InGaAs-GaAs-AIGaAs asym-
meu'ic cladding ridge waveguide DBR lasers with emission

wavelengths of 914, 926, and 934 nm are been reported.
DBR lasers at these wavelengths are promising as reliable and
compact sources for remote sensing of water vapor. These
devices emit single frequency with over 30-dB side-mode

suppression and exhibit CW threshold currents as low as 11

mA and slope efficiencies as high as 0.37 W/A.
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for Optoelectronic Devices
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Themetalorganic chemical vapor deposition(MOCVD)process
for electronic and photonic compound semiconductor materials
and devices is reviewed. We begin with an introduction to the
basic MOCVD chemical reactionprocess, gas delivery equipment,
reaction chambers, and safety. Growthmechanisms,including hy-
drodynamics, boundary-layer issues,thermal effects,andpyrolysis
reactions, are defined, and criteria for growth regimes, growth
rate, and alloy composition are described. Material, structural,
and dopant considerations, which are particularly important to
optoelectronic devices, arepresented. Last, a brief descr_tion of
the selective area epitaxial growthprocess is presented.

Keyword.c_Compound semiconductors, cpitaxial growth,
MOCVD, optoelectronic materials, quantum-wellheterostructures.

I. INTRODUCTION

The metalorganie chemical vapor deposition (MOCVD)

process for the growth of compound semiconductor ma-
terials and devices originated in the pioneering work of
H. M. Manasevit [1], at what was then North American

Rockwell, in 1968. This process is also called organometal-
lie chemical vapor deposition (OMCVD), metalorganic
vapor phase epitaxy (MOVPE), and organometallic vapor
phase epitaxy (OMVPE). Manasevit originally named the
process MOCVD to emphasize the metal constituent and

to avoid confusion with organometallic chemistry research,
which generally places more interest in, and emphasis on,
higher order organic radicals. His early work included

epitaxy on crystalline substrates but mainly involved the
more general chemical vapor deposition of amorphous
thin films on a number of different solid surfaces, such

as sapphire. In the early 1970's, researchers at Rockwell
and other laboratories recognized the limitations of the
state-of-the-art (at the time) liquid phase epitaxy O-,PE)

ManuscriptreceivedJuly5. 1997:revisedJuly 18.1997.Thiswork was
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semiconductor growth process. By applying the lessons

of silane chemical vapor deposition for silicon epitaxy
to compound semiconductor materials and devices, they
determined a need for controllable large-area and thin-
layer growth and a manufacturable gas-phase process. The

result was an explosion in the research, development, and
commercialization of the MOCVD process for virtually all

forms of compound semiconductor eleclzonic and optical
devices so that, by the early 1980's, LPE was reduced to
a laboratory curiosity.

Since that time, actually a remarkably long period of
time when measured on the scale of innovations in crystal

growth processes, the MOCVD process, along with the

molecular beam epitaxy (MBE) process described in a
paper by K.=Y. Cheng in this special issue, I has dominated

the research, development, and manufacture of compound
semiconductor devices. MOCVD is the epitaxial crystal

growth technology of choice for an impressive array of
commercial devices, including lasers, light emitting diodes
(LED's), photocathodes, heterostructure bipolar transistors,
photodetectors, and solar cells. Virtually every alloy com-
pound semiconductor materials system has been grown
successfully by MOCVD, including the antimonides for

long (> 2 /_m) wavelengths, the quaternary InGaAsP for
telecommunications wavelengths (1.3-1.55 pro), AIGaAs-

GaAs-InGaAs structures for wavelengths in the range of
700-1100 rim, visible InGaP and related compounds, and
the column IT[ nitrides for blue and ultraviolet lasers

and LED's. The diode laser market alone, dominated by

MOCVD-grown devices, is projected to reach $1.9 billion
in sales in 1997 [2]. Even though the blue rtitride LED
technology is relatively young, Nichia is producing many

millions of these devices every month by MOCVD [3].
Hundreds of MOCVD reactor systems have been sold
worldwide, and reactors capable of producing 2500 cm2 of

epitaxial material in a single growth run are commercially
available [4].

_Seepp. 1694-1714.
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In this paper, we will outline the basic MOCVD chemical
reaction process and describe the gas delivery equipment
and reaction chambers common to the process. Safe han-

dling of the constituent materials will be addressed. The
growth mechanisms, including hydrodynamics, boundary-
layer issues, thermal effects, and pyrolysis reactions, will be
defined to establish criteria for growth regimes, growth rate,

and alloy composition. Material, structural, and dopant con-
siderations that are particularly important to optoelectrouic
devices are presented. Last, a brief description is included
of the selective area growth process, which promises to

be a key technology for future photonic integrated circuit
devices. In this paper, we present an overview of this
remarkable growth process. We encourage the reader inter-
ested in learning about the process in more detail to refer

to the extensive literature on the MOCVD growth process,
starting with some of the books and book chapters on the
subject [5].--[14].

lI. BASICPROCESSESAND EQUIPMENT

In this section, we describe the basic chemical reaction

that defines MOCVD, the kinds of sources specific to this
particular epitaxial growth process, and, in general terms,
the hardware used to deliver and process the sources into

the resulting thin films.

A. Reaction Equations

We can begin to understand the essence of the MOCVD

process for deposition of compound semiconductors and
alloys by considering the simplest possible basic chemical-

reaction equation, which is in itself very important, and then
extending to more complex situations. This simplest case
[1] involves a pyrolysis reaction of the vapors of a volatile

organometallic compound and a gaseous hydride, given by

R.A + DH. -... AD + nRH (1)

where R is an organic radical of some unspecified form but
generally of lower order, such as a methyl- or ethyl-l'adical,

and A and D are the constituent species for the deposited

solid. An important example of this simplest case is given
by

(CH3)3Ga + AsH3 --, GaAs + 3CH4. (2)

A large number of organometallic compounds have been
studied as sources for the MOCVD process, with the
most important arguably being trimethylgallium (TMGa),

trimethylaluminum (TMAI), and trimethylindium (TMIn).

Ideal sources should be easily synthesized and easily puri-
fied and have reasonable vapor pressures, where "reason-

able" is a term relating to the practicalities of using several

different sources together. Usually, these ate liquids, but
there are important exceptions, such as TMIn, which are

solids with reasonable vapor pressure. For solid sources,
vendors offer a number of different creative solutions to

the problem of forcing a relatively constant evaporation
surface area. In general, the organometallic constituents

are transported to a heated substrate by passing a carrier

gas, usually hydrogen or nitrogen or a mixture of the two,

over or through the compound contained in a constant-
temperature bubbler vessel. There is a simple relationship,

discussed below, between the bubbler temperature and the
constituent delivery rate, provided the carrier gas flow rate
does not exceed the saturation rate of the eapor over the
liquid or solid source.

Most MOCVD growth of III-V compound semiconduc-
tors and alloys involves the use of hydrides, such as arsine
or phosphine, for the column V species. In principle, these

are the simplest of column V sources to use because they are
already gaseous and supplied from simple cylinder-based

delivery systems. In practice, the toxicity of these gases
requires that special attention be given to the safe mmsport,
handling, and storage of these gases. Largely for these
safety reasons, there also has been considerable attention

given to the use of organometallic compounds [15]-[19]

for both the column/ll and V species, in which case the
reaction equation becomes either

R.A + I_.B -_ AB + ,RH + nR'H (3)

or

R.A + P/.B -. AB + nRR'. (4)

The growth of semiconductor alloys bY MOCVD is easily

accomplished by mixing the vapors of the different alloy
constituents in the appropriate vapor phase ratio to form
the desired composition. A general equation for a ternary
alloy is given by

zP,..A+ (I- z)P_B + DH. --,A_Bt__D + nRH (5)

which applies, for example, to ternary InGaAs

z(CH3)3In + (1 - z)(CH3)3Ga + AsH3

In_:Gal-zAs + 3CI-L_. (6)

A general equation for a quaternary alloy is given by

xR.A + (I- z)R.B + _IDH. + (I- II)EH.

A.Bt__DvEI_ _ + nRH. (7)

Table 1 is a selection of common alkyi and hydride sources

used for MOCVD growth. There are other sources and
many different combinations that can be used to form a

wide variety of III-V and II-VI semiconductor compounds
and alloys. More detailed discussion is beyond the scope

of this work, and the reader is encouraged to refer to the
various books and book chapters listed in the references for
further information on specific combinations.

B. Reactor Gas Delivery Systems

MOCVD reactors consist of three major components:

the reactor gas delivery system, the reaction chamber,
and the reactor safety infrastructure. The reactor delivery

system [20]-[25], or gas panel, is a very clean, leak-free
network of stainless-steel tubing, automatic valves, and
electronic mass flow controllers, as shown in Fig. 1. Each
constituent or dopant type (e.g., gaseous hydride, high vapor

1716 PROCEEDINGS OF THE IEEF.. VOL. 85. NO. I I. NOVEMBER 1997
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Fig. 1. Schematic diagram of an MOCVD reactor delivery system gas panel, illustrating hydride

deliver" modules, alkyl delivery modules, and the vent-run configuration.

Table I "13'picaJColumn IH and V Sources

Trimethylgallium TMOa
TriethylgaIEum TEGa
Tdmethylaluminum TMAI
Tdethylaluminum TEAl
Tdmcthylindium TMIn
Triethylimiium TEIn

Arsine AsH 3
Phosphine PH 3
Sdbine . SbH 3

Trimethylphosphorus
Trimethylarsenic TMAs
Tdraethyiantimony TMSb
Triethylphosphorus TEP
Tfiethylarsenic TEAs
Tricthylandmony TESb
Terdarybutylarseaic TBAs
Tertiarybutylphosphorus TBP

pressure liquid, etc.) requires a different control stream,

which is replicated for each source of the same type.
Hydride delivery modules generally require a few valves

and an electronic mass flow controller, since these sources

are already provided as dilute, high-pressure gases in gas
cylinders. Additional point-of-use gas filtering is included

whenever possible to remove undesirable impurities, espe-

cially oxygen or water vapor. Liquid alkyi delivery modules

are more complicated. These high-vapor-pressure source

materials are contained in stainless-steel bubblers and held

in a refrigerated bath to maintain a stable vapor pressure

over the liquid or solid source. Additional plumbing is

provided for source replacement without contamination of

the rest of the delivery system. Source modules for critical

alkyls commonly include ultrasonic monitoring of the mass

flow, with the possibility for using the output from such

monitors for closed-loop control. Additional gas-handling

hardware may be required for dilution of either hydride or

alkyl modules to increase the effective range of available

flows, especially for dopant sources.

An important part of the main gas panel is the supply of

carrier gases within a vent-run configuration, as shown in

Fig. 1. Constant source delivery is critical for thin quantum-

well optoelectronic devices and can have implications in the

growth of thicker heterostructures in materials systems that

must be lattice matched. Small changes in carrier gas flow

can significantly change the source delivery. Therefore, the

design of gas delivery systems must avoid transients from

switching or dead space. To improve carrier gas consistency

further, the vent-run system maintains a relatively large

flow rate of carrier gas (typically several liters/win) in

the supply line. Often there are separate hydride and alkyl

supply lines. Special vent-run valves that have nearly zero

dead space couple the individual source modules to the

supply line. The source flow rate (usually on the Order

of tens or hundreds of cmS/min) can then be established

and stabilized while the valve is vented to a waste line,

shown as a dashed line in Fig. 1, and prior to injection into

the run supply line, shown as a solid line in Fig. 1. An

additional vent-run supply line is often used to combine

the flows from the hydride and alkyl supply lines, either

entering or bypassing the reaction chamber. As long as a

fixed relationship is maintained among the total pressures

COLEMAN: CHEMICAL VAPOR DEPOSITION 1717
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Fig. 2. The two common chamber designs for MOCVD epitaxiai
growth in simplified form. (a) Venical-reaction-chambe_ geometry.
(b) Horizontal-reaction-chamber geometry.
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Fig. 3. Simplified schematic diagram of a comme_al verti-
cal-reaction-chamber geometry (after [24]).
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in all vent and supply lines, transients will be minimized
and the actual source flow can be controlled.

C. Reaction Chambers

The reaction chamber is the vessel in which the source

gases are mixed, introduced into a heated zone where an

appropriate substrate is located, and the basic pyrolysis
reactionsdescribedabove take place. There are two basic

reaction-chamber geometries [1], [26] commonly used for

the MOCVD growth of optoelectronic materials. The two
chamber models, shown in simplified form in Fig. 2, are
fundamen_ly different in operation, but one or the other
can be used to describe the operation of most, more

sophisticated commercial reaction chambers. There are a
number of design features in common. Both designs are
cold-wall systems that reflect the basic pyrolysis nature of

the process, both contain a relatively small diameter inlet
into some form of transition region, and both make use
of an indirectly heated (radio-frequency induction heated

or infrared radiant heated) silicon carbide-coated graphite
susceptor. The chamber itself can be quartz, stainless steel,

or quartz-lined stainless steel.
In the vertical reaction chamber 1"Fig2(a)], the process

gases enter at the top and ate deflected by a baffle before

moving downward through a cold transition region and
approaching normal to the heated susceptor. The gas flow is

forced to the sides by the susceptor with a velocity profile

dependent on geometry and affected by the thermal profile
in the system. Better uniformity is obtained by rotating the
susceptor. Exhaust gases escape through the base of the
reaction chamber. Large susceptors can accommodate mul-

tiple wafers. In the horizontal reaction chamber [Fig. 2(b)],
the process gases enter from the small inlet to the left and
expand to an approximately laminar flow across the heated

susceptor, which is tilted by a small amount (5-10 °) to
account for reactant depletion. Multiple wafers can be ac-

commodated along the length of the susceptor, or even side
by side if the susceptor width is large enough. Uniformity
can be improved by incorporating a rotating disk within

the otherwise rectangular susceptor. Barrel reactors, similar
to those used extensively throughout the silicon industry
for silicon CVD, are occasionally used in MOCVD growth
and are similar in operation tO the horizontal geometry of

Fig. 2(b). Fig. 3 shows a simplified schematic diagram of a
commercial vertical-reaction-chamber geometry [27]. This
multiple-wafer chamber has a gas-mixing region above a
diffuser [28] that forces a uniform normal gas flow. The

susceptor sits on a rotating sleeve that isolates the heater
from the process gases. A multistage heater block is used
to introduce a lateral temperature gradient for improved

uniformity.

D. Safety

Whether or not hydride sources are used, safety is of para-
mount importance in the design and operation of MOCVD
growth apparatus [29]-[32]. Although a detailed description

of MOCVD safety is beyond the scope of this paper, the
main risks and most common ways to handle them can be
outlined. Hydrides pose the biggest risk because they are

high-pressure toxic gases. The alkyls pose the next highest
risk because, although they are toxic and pyrophoric, they
are liquids and generally easier to handle. Some of the
effluent gasescauserisk becausethey cancontainelemental
phosphorus and arsenic as well as the oxides of these
elements. Ancillary risks include quartz reactionchambers
(which are breakable),largevolumesof explosivehydrogen
gas, high temperatures, and the acids and solvents used for
preparing for, and cleaning up after, a growth run.

Handling these risks, in general terms, falls into three

categories and applies equally well to all epitaxial growth
processes and, indeed, to all semiconductor processing
act/v/r/es. The first is limited access. Access should be

limited in a staged or "onion peel" manner, such that
each level of greater access to potentially harmful materials

requires a higher level of authority and a correspondingly
higher level of training. The second category is training.
Thorough training in the safe handling of materials must

be required, and emergency-response situations should be
considered and appropriate plans made. Plans and training
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..
! ishould involve not only those with routine access hut also

those likely to respond in an emergency, such as a local
hazardous-materials response team. The third category is a
hardware safety infrastructure. Hazardous gases should be
located in a relatively remote area and held in exhausted
safety cabinets with automatic cylinder-change hardware
and both mei:hanical and electronic flow-rote sensing and

limitation. Process gases should be piped in leak-free Coax-
ial tubing with an inert purge gas or vacuum in the outer
tube. Adequate exhaust hoods and cabinets should be used
to contain the growth apparatus itself. Waste gases should
be processed with filters, combustion discharge, oxidation,

wet chemical scrubbing, or a combination of these methods.
Automatic shutdown of source gases and a switch to inert
purge gases should take place in the event of power failure
when inadequate backup power is available. Perhaps most

important, adequate toxic- and flammable-gas monitoring
should be provided at all points along the process chain,
including attics, halls, labs, cabinets and hoods, purge lines,

and effluent gas lines.
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Fig. 4. (a) Evolution of the gas-velocity profile in the horizon-

tai-reaction-chamber geometry. Co) A blow-up of the susceptor

surface showing the pyrolysis fragmentation process schematically.

HI. GROWTHMECHANISMS

It is true for MOCVD growth, and for any growth
process that takes place in a regime of viscous flow, that
the hydrodynamics of the reactor geometry play a key
role in the nature of the process and must be understood.
This understanding is complicated by the consideration of

thermal and chemical effects. While it is not possible to
provide an exhaustive treatment of these subjects bere, it
is useful to outline the basic hydrodynamic, thermal, and
chemical processes and then extract important conclusions

about such practical concerns as growth rate, composition,
and heterostmcture interface quality.

A. Hydrodynamics and Boundary Layers

Even in the absence of a heated suseeptor or reactive

chemical species, practical reactor geometries exhibit fairly
complex flow patterns [33]. Understanding the detailed
hydrodynamics of such real systems is usually best accom-

plished by relying on modern numerical analysis methods.
On the other hand, remarkable physical insight into the
MOCVD process can be gained by considering the hydro-

dynamic behavior of simplified systems. In the regime of
viscous flow, the boundary condition that the gas velocity
must be zero at all solid surfaces is the critical issue.

Consider the flow of some inert carrier gas without any
reactive species present in a cold reaction chamber. Fig
4(a) shows a view of the evolution of the gas velocity
profile in a simplified reactor geometry that approximates

the horizomal-reaction-chamber geometry of Fig. 2(b). If
a gas flow of uniform velocity is incident on the entrance
to a tube (or infinite parallel plate) geometry, the zero-

velocity boundary condition quickly begins to affect the
velocity profile, as shown on the left in Fig. 4(a). At some

distance along the path--which may be large and depends
on the gas, its total velocity, and the dimensions of the
chamber--the velocity profile stabilizes, as shown in the

center of Fig. 4(a). In practical re.actors, a large mismatch

often exists between the inlet tube, which typically is a
standard tube size of less than I0 ram diameter, and the
characteristic dimension of the reaction chamber. Thus,

even in a relatively simple horizontal reaction chamber,
the gas may have to travel well into the chamber before a
simple parabolic profile stabilizes.

The region nearest any surface, where the velocity profile
drops rapidly and nearly linearly to zero, is referred to

as the boundary layer or, inaccurately, the stagnant layer.
The gas everywhere in the boundary-layer region has a
finite velocity, although it may be quite small compared
to the velocity elsewhere in the chamber. Normal MOCVD

growth processes generally involve large carrier gas flows
combined with relatively small source gas flows. The

basic MOCVD reactions are pyrolysis reactions; so, with
no region of the reaction chamber being heated to a
temperature sufficient to drive the reaction, the overall
velocity profile in the chamber is largely defined by the

carrier gas flow rate and geometry, and the cons_tuent
gas-phase concentrations are uniform.

B. Thermal Effects

The addition of a heated suseeptor, shown as the shaded

region in Fig. 4(a), introduces several important complica-
tions, some essential and others undesirable. A heated zone

is necessary to drive the pyrolysis reaction and provide for

the desired materials deposition. The temperature gradient
between the susceptor and the chamber ambient can be
very large, often several hundreds of degrees Celsius. For

example, the optimum MOCVD growth temperature for
many m-V compounds and alloys falls in the range of
600-800°C (the column 111nitrides, such as GuN, may be

grown at much higher temperatures), while air or water
cooling is often used to maintain the chamber walls at tem-

peratures close to room temperature. A large temperature
gradient distorts the velocity profile from a simple parabola,
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as shown on the fight side of Fig. 4(a), which results

in a somewhat steeper velocity profile in the boundary-
layer region. More important, a large temperature gradient

is likely to cause detrimental buoyancy effects such as
large convection or recirculation cells. These can increase
the effective residence time for the reactive constituent or

dopant species and contribute to, for example, less .abrupt
heterosn'ucture interfaces. In terms of growth mechanisms,

the presence of a heated surface results in a sink for reactive
constituents and leads to concentration gradients that define

the growth rate for the deposited material. However, when
the temperature is high enough, relative to the carrier gas

velocity and thermal conductivity, the gas far above the
surface becomes hot enough to cause detrimental, parasitic,

gas-phase pyrolysis reactions.

C. Pyrolysis and Reaction Mechanisms

The basic mechanism driving reaction (1) is a pyrolysis
reaction in which the individual constituents decompose to
form the desired nonvolatile deposited layer and volatile

reaction products. Of course, the process is not that simple

[34]-[39] and is complicated by a number of considerations.
These include the possibility of intermediate reactions as
the source molecules fragment step wise, e.g.,

(CH3)3In --_ (CHz)2In .-, (CH3)In .--, In (8)

the possibility of catalysis at the different surfaces present
(quartz, semiconductor, silicon carbide-coated graphite), the
relative nonvolatility of some reaction products, especially
carbon and carbon-containing compounds, and possible

interactions with intentional or unintentional impurities.
Fig. 5 shows the pyrolysis efficiency for some of the
key alkyl and hydride sources for MOCVD growth [14],

[40]-[47]. The pyrolysis efficiencies of the column V
hydrides, shown in Fig. 5(a), are strongly affected by the

presence of a catalyzing surface. The data for the curves in
Fig. 5(a) for AsHa (solid squares) and PHs (solid circles)
were measured in the presence of the logical corresponding
binary substrates GaAs and InP, respectively. Shown for
reference as a dashed line (open circles) in Fig. 5(a) is

the pyrolysis efficiency of PH3 measured in a quartz
tube without an InP substrate present. The effect of the
P-containing surface is enormous, reducing the effective

pyrolysis temperature by more than 300°C. Similar results
have been observed for AsH3 with and without a GaAs

catalyzing surface present.
Fig. 5(b) shows the pyrolysis efficiencies for two column

HI metal alkyl sources, TMGa and TMIn. The behavior
of these is typical Of all of the column HI alkyls. Note
that the effective temperatures for compleie pyrolysis are

somewhat lower for the alkyl sources and that the slopes
are somewhat steeper, defining a fairly narrow temperature

range for the transition from zero to complete pyrolysis. In
addition, no significant change is observed in the pyrolysis
efficiency of these alkyl sources in the absence or presence
of a catalyzing surface.

Enough of the critical components have been described
to allow us to outline in some detail how the deposition
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Fig. 5. (a) Pyrolysis efficiencies of the colunm V hydrides of
AsHa (solid squares) and PH3 (solid circles) measured in the
presence of binary subswates Ga.M and InP, respectively. The
pyrolysis efficiency of PH3 measured in a quartz tube without
an InP substrate present is shown as a dashed line (open circles).
(b) Pyrolysis efficiencies for two column III metal alkyl sources,
TMGa and TMIn (after [14] and [40]-[47]).

process works. A velocity profile and boundary layer have
been established, largely defined by the geometry of the

chamber and the carder gas hydrodynamics. The high-

temperature heated susceptor has introduced a temperature
gradient and promotes the pyrolysis reaction and pro-
vides a sink for constituent source material, leading to a

concentration gradient above the susceptor. The velocity,
temperature, and concentration gradients define a basic gas-

phase diffusion process. Since the pyrolysis natures of the
column HI alkyls and column V hydrides are somewhat dif-
ferent, because of surface catalysis, we can speculate on the

deposition mechanisms. As the column HI alkyl molecules
diffuse toward the surface, they encounter higher temper-
atures and lower gas velocities (longer residence time),
with the result that fragmentation likely begins above the

surface and proceeds step wise as described in (8). A similar
process occurs for the column V hydrides, except that the
strong surface catalysis effects described above argue that
these molecules remain relatively intact until they adsorb

on the surface. This process is shown schematically in the

enlargement of the susceptor surface shown in Fig. 4@).

D. Growth Regimes

The MOCVD growth process, whether involving column
V sublattice alloys or not, generally is performed under
conditions of nonstoichiometric, excess, and usually unin-

terrupted column V species gas flows. This compensates
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Fig. 6. Growth rate as a function of temperature showing the
three distinct growth-raze regimes.

for the somewhat lower pyrolysis efficiencies and greater

temperature dependence of pyrolysis efficiency at typical
growth temperatures [see Pig. 5(a)]. More important, it

compensates for the much greater volatility of the column
V atoms in the desired solid films. Thus, the growth rate
of MOCVD epitaxial layers is defined by the column
lII alkyl constituents. We can define three fairly clear

growth regimes [48], as shown schematically in Fig. 6.
The absolute growth rate depends on too many chamber-

and process-specific parameters to quantify, so an arbitrary
relative scale is used in Fig. 6. The first of these three
regimes, at relatively low temperatures, is a region of

reaction-rate limited growth. The alkyl pyrolysis efficiency
shown in Pig. 5(b) usually is steep, implying that the
reaction-rate limited growth regime should only occupy a

narrow temperature range.
Once unity pyrolysis efficiency is reached, generally for

all temperatures greater than 500°C or so, a regime of mass
transport limited growth is established [37], [49]-[51]. This
region is usually several hundred degrees Celsius. In strict

terms, diffusion plays a role in this region, but the gas-phase
diffusion coefficient of the alkyls is only wealdy dependent
on temperature and is moderated by temperature changes
in the boundary layer. In any case, the input source rate

defined by the user has a much greater dynamic range.

At some still higher temperature, the temperature of the
gas becomes high enough far enough above the surface

that gas-phase pyrolysis of the hydrides becomes important
and solid particulate can form without depositing on the

substrate. This parasitic spontaneous nucleation [52], along
with increased desorption of the reactant species, takes

place at the expense of the desired deposition and leads
to a reduced growth rate, as shown in Fig. 6.

E. Growth Rate and Composition of Alloys

If we limit the discussion to the region of mass transport
limited growth, it is possible to use the conservation of

matter and the gas law to establish functionalities for both

the growth rate and composition of rllr-V semiconductor
compounds and alloys by MOCVD. Under conditions of
excess column V constituent and unity alkyl pyrolysis
efficiency, all of the alkyl molecules supplied to the system
.will yield solid material in some effective surface area. The

effective surface area is chamber specific and should be on
the order of the area of the heated susceptor. In practice,
the effective area typically is approximately three times the

actual heated suseeptor area. As long as there are no large
changes in carrier gas flow rate or growth temperature, this
area can be considered a constant. Thus, the growth rate g
for a binary compound (1) is given by

MWA
g = kTdAAe pAFA (9)

where PA is the vapor pressure of the column HI alkyl
and FA is its carrier gas flow rate. MWA is the molecular
weight of the compound, k is Boltzmanu's constant, T is the
temperature, da is the solid density, and A, is the effective

• area. The same conditions hold for a semiconductor column

11Isublattice ternary alloy (5), so the growth rate g for the

alloy is given simply by the sum of the binary growth rates

MWA MWB

g "" kTd.aA_ paFA + kTdBA--"-'_pBFB. (10)

Development of a functional form for the composition of
ternary column HI sublatfice alloys is even simpler. The

unity pyrolysis efficiencies of the alkyl constituents imply
that the solid phase composition will be identical to the
ratio of the growth rate of constituent B to the total growth
rate [51]. Thus, the solid composition x is given by

1
x= _LE0.FB..M.b.a.a_ • (11)

1 + _,AFAMWA de

There may be other integer prefactors for the vapor-pressure
flow-rate product terms in (I0) and (11) if any of the alkyl
sources is other than a monomer, as is the case for TMA1,
which is a dimer.

An example of alloy compositions and growth rates for

ternary AlzGal_=As is given in Fig. 7. The horizontal axis
in Pig. 7 is a metal alkyl flow ratio

F.a/[Fa + FB] (12)

in which only the routinely adjusted flow-rate terms are
retained. The source vapor pressures are usually held con-

stant to avoid modifying refrigerated bath temperatures, and
the other terms are matedal-xlependent constants. Fig. 7(a)
shows the growth rate normalized to total metal alkyl flow
rate, and Fig. 7("0) shows the soEd composition ar of the

resulting alloy layer. The solid lines in Fig. 7(a) and Co)

correspond to (I0) and (I1), respectively, while selected
experimental data points are shown as solid squares. Com-
plete characterization of an MOCVD apparatus generally
involves verifying these curves for specific desired compo-

sitions and specific growth temperatures. Source or chamber
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Fig. 7. (a) Growth rate normalized to total metal alkyl flow rate.
(b) The solid composition .r of AlzGal-.As as a function of
metal alkyl flow ratio F..4/IF..4 -I- FB]. Selected experimental dala
points are shown as solid squares,

replacement usually implies reverification, and recalibration
if necessary.

Analysis of MOCVD growth of column V sublattice

alloys follows in much the same way as the preceding
discussion but is complicated by the details of hydride
pyrolysis. The softer slopes in the hydride pyrolysis effi-
ciencies shown in Fig. 5(a), the surface catalysis effects for
hydrides described above, dilution of the hydride sources,

and the requirement for excess column V growth condi-
tions contribute to a reduced overall efficiency for hydride
incorporation that must be included in the analysis. This

overall efficiency is dependent on temperature and process
parameter and leads to a column V sublatoce composition
that is given by

y = ,Tz:,rD/[,TDF + (13)

where _?Dand r/E correspond to the overall pyrolysis effi-

ciencies of the column V constituents D _nd E, respectively.
Equation (13) indicates that the gas-phase composition
is, in general, different from the solid-phase composition.

The growth rate for column V sublattice ternary alloys
is still defned by (9) because of the excess column V

species growth condition. For quaternary alloys containing
variation on both sublattices, the composition on the column

HI sublattice is defined by (11), and the composition on the
column V sublattice is defined by (13).

p_r, CONSIDERATIONS FOR OPTOELECTRONIC DEVICES

It would be a most difficult task to provide detail on

the large number of different optoelectronic compounds
and alloys that have been grown by the MOCVD process
with different source combinations, process parameters,

and reactor configurations. The best studied compounds
and alloys--GaAs, In.P, InGaAs, AIGaAs, InGaAsP, and
InGaP---have become widely used commercial materials

for such applications as compact disc (CD) player lasers,
CD read.only memory, laser printer sources, 1.3- and 1.55-
pm telecommunications lasers, 980-rim lasers for Er-doped
optical fiber amplifiers, and red LED's. These products,

made inexpensively and in large numbers and often utilizing
the MOCVD process for the growth of the basic structures,
clearly prove the viability of the process. So in this section,
rather than elaborate on a few examples, we will generalize

the necessary range of device structure parameters and
address how well the MOCVD process fares in meeting
the requirements.

A. Materials,Structures,and Doping

The quantum-wellheterosmlcture(QWI-Dlasercanserve

asa usefultoolinoutliningtherangeofmaterialsparame-

tersnecessaryforoptoelect_uicdevices[13].Thicknesses
in QWH lasers range from as I/t0e as 50 A for the
quantum wells and barriers to one micrometer or more

for optical waveguide confining layers. Doping in these

different layers can vary from unintentionally lightly doped
quantum wells--for example, in which the background
doping ideally is very low (< l0 ts cm-a)--to moderately

doped confining layers--for example, in which the back-
ground doping ideally is quite high (2 x 10ts cm-a)---to
highly doped, such as contact layers, in which the doping
is as high as possible. The composition of any of the

layers in a QWH laser can vary widely, although generally
there are only a few different compositions in any given
laser structure. The well size and composition together

define the emission wavelength of the laser, while the
compositions of the other Iayers in the structure play a role
in defining an optical waveguide. A less clearly delineated
characteristic of a laser structure is optical loss, which arises

unavoidably from intentional doping as well as from the
basic quality (dislocations, background impurities) of the
epitaxial material.

A wide range of growth rates is easily available from the
MOCVD process. The limits on growth rate arise from the
alkyl saturation limits and the range, controllability, and

reproducibility of the electronic mass flow controllers used
to supply the alkyl constituents. With no special modifica-
tions, an MOCVD reactor can reliably provide growth rates

in the range of a few angstroms per second to several tens
of angstroms per second, all within the growth of a single

structure. Thus, the different steps in the process can be
optimized separately, with the quantum wells and barriers
being grown at a very low growth rate while the thicker con-
fining layers are grown more rapidly. There are a number

of suitable dopant sources for MOCVD growth: hydrides
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Fig.8. ['figh-resolutionwansnussion elecU'on microgra.ph w/th corresponding lattice image of a
GaAs-AIAs supertattiee grown by MOCVD having IT-A layer thickness_ (after [57]).

such as silane or alkyls such as diethylzinc. These dopants
have the same process requirements as described above

for constituent sources, with the additional requirement of
well-controlled dilution. Compositional control generally is

simple to obtain, with the exception of very low or very
high composition alloys when the system has been designed
for midrange compositions. For these points near the limits,
there are very large gas-phase constituent ratios, and within
the limits of the mass flow controllers, controllability or

reproducibility may be more difficult to obtain.

8. Heterostructure Interfaces

A critical issue for the growth of quantum-well het-
eroswactures and superlaniees, by any growth method, is

the quality of the hetemstructure interfaces. Abrupt inter-
faces become more and more important as the thickness of
the layer becomes smaller. Even for thicker heterostructures
of materials, where there is tight tolerance on the Iattiee-

match composition, graded interfaces are to be avoided.
This concern arises for gas-phase growth processes such
as MOCVD for two different fundamental reasons. The

first reason is the large amount of gas moving in the
reaction chamber at relatively slow speeds. Thus, even

abrupt pulse,o of constituent gases inevitably are going to
broaden by dispersion. This problem can be exacerbated by
recirculation cells inside the reaction chamber. The second

reason is dead space in either valves or tubing, which
can introduce transients if the amount of dead space is

significant in comparison with the total amount of injected
constituent material.

There are good solutions to these problems. Properly
designed reactor gas-panel architectures and high-quality

modern zero dead-slYaee valves minirni_, though do not
completely eliminate, the dead-space problem. Reaction

chambers need to be carefully designed, and operated in an
appropriate hydrodynamic range, to minimize or eliminate
recimulation. If these problems have been resolved, the last

problem of gas-phase dispersion can be minimized by using
an interrupted growth timing sequence. Only the column
rrl species are interrupted, so that the out-diffusion of the
more volatile column V elements from the solid substrate

or grown layer is avoided. Interrupted growth has been
demonstrated to be successful within a limited range. If the

pause time is too short, then dispersion effects continue to
be manifested. If the pause time is too long, the possibility
for contamination of the surface from unwanted impurities
in the column V source gases increases. Typical pause

times are 5-20 s. When these growth-process solutions
are implemented, very abrupt interfaces can be grown

by the MOCVD process [23], [53]-[62]. Fig. 8 shows a
high-resolution transmission electron micrograph [57] with

corresponding lattice image of a GaAs-AIAs superlattice
grown by MOCVD having 17-,/_ layer thicknesses. The
interfaces are regular and abrupt, without undulation.

Ideally, a fully automatic MOCVD reactor system would

provide some mechanism for acquiring real-time /n situ
data on the instantaneous thickness and composition of the

growing layer. These data would be processed and used
in a closed-loop feedback control configuration directly
and precisely to control the thickness and composition.

The user would simply define a composition and thickness
rather than specific growth times and constituent supply

rates, as is presently done. This is especially important for
such applications as multiple quantum wells and stacked
dielectric mirrors for vertical-cavity surface emitting lasers
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(VCSEL's). The key to a closed-loop system is data ac-

quisition, but the environment in an MOCVD reaction
chamber precludes the use of most standard surface-analysis
techniques. A number of promising optical approaches
[63],[64] have been studied,however,allhavingthe

advantageofusinglightsourcesthatcanbe locatedoutside
the reactionchamber.These are,forexample,reflection

differencespectroscopy,which capturesdifferencesinthe

amplitudeof lightreflectedfrom thegrowingsurface,and

surfacephotoabsorption,which isbasedon thereflectivity

of p-polarizedlightincidentat the Brewsterangleand
issensitiveto chemicalcoverageon thesurface.Future

closed-loopMOCVD systemswilllikelybe designedon
thebasisofthesekindsofremoteopticalmeasurements.

V. SF.._CT_VEAREA EPrr,_x'Y

The MOCVD growth process described in the preceding
sections has become a mainstay in the commercial man-

ufactufing of discrete semiconductor lasers. The process
has continued to evolve in the last decade, with more

sophisticated commercial reactors and better, purer sources.
It can be argued that the most important advances in
MOCVD growth research and development in the past
decade have been in the application of this process to
new materials, such as the wide-gap group llI nitrides,
described by S. DenBaars in this special issue. 2 Another

important advance in the growth process that seems likely
to have enormous impact on future optoelectronic devices
or, more accurately, integrated photonic device, is selective

area epitaxy (SAE) or selective area growth (SAG). The
biggest limitation to MOCVD, or any conventional epitaxial
growth process, is that no matter how fine the resolution or
how high the quality, the growth is uniform over the entire

wafer. This is inconsistent with different optimum design
structures for the optical cornponentry, such as lasers,

amplifiers, modulators, detectors, and routing structures,
that might make up a photonic integrated circuit. One
solution is to design a compromise layer structure. Another

is to grow different stacked layered structures and then use
etching techniques to access them individually. A third is

to grow one form of structure, etch part of it away, grow
another kind of structure, etch part of it away, and so on
until the desired functionality is obtained. It would be most
desirable to have a single growth process that yields the
desired structure at any area on the wafer. SAE [65]-[85]

most closely approximates this ideal.

A. SAG and Modeling

The opticalpropertiesof most photonicdevicesare

definedby thetransitionenergiesinthedevice,which in

turnaregenerallydefinedby thequantum-wellthicknesses

andcompositions.Thus,ifwe cancontrolthesethicknesses

and compositionsanywhereon thewafer,we can define

differentoptimum deviceswhere we want them. SAE

makes use ofan insulatingmask,suchassilicondioxide,

to inhibitthedepositionof materialwhereverthe mask

2See pp. 1740-1749.
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Fig.9. (a) Dual oxide stripe mask pattern for selective

epitaxy. Co) A schematic view of the enhanced growth in the

unmasked regions.

is present. As a result, the deposition elsewhere must be

enhanced simply because of the conservation of mass. The
enhancement profile will reflect both the mask pattern on

the wafer as well as gas-phase and surface-diffusion effects
in the reaction chamber. At first giance, it appears that the

obvious pattern of choice is to mask the entire wafer and
open windows of different sizes and grow separate regions

designed for the device intended to occupy the region. This
is not the best solution, however, for several reasons. For

example, if the size of the masked area is too Iarge, then

the growth rates in the unmasked areas are too large and
perhaps uncontrollable. Also, optical interconnection of the

separate devices is not straightforward.

A much better, more practical solution is to use the mask
pattern shown schematically in Fig. 9(a). This dual-stripe
mask pattern has a number of useful features. The opening

between the stripes ultimately will be the active region of
the device, and the width of this opening can be used to

define a lateral wavegnide because there will be a step in the
indexes of refraction at the edges of the stripe opening. As

we discuss below, typical stripe openings are on the order of
a few micrometers, which is much smaller than the effective

diffusion lengths in the growth process. This means that
the growth inside the stripe opening will be essentially

uniform, as shown in Fig. 9(b). The growth rate in the stripe
openings will be determined by the oxide mask widths, with

wider stripes yielding thicker layers (and thicker quantum
wells) for the same growth time. The stripe opening is held
constant for different devices so that creating an optical

path is trivial. Last, the relatively large areas outside the
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Fig. 10. Oudine of numerical models for selective area epitaxy.
(a) Basic unit-ceU cross section for the dual smpe pattern. Co)
Example of a computational mesh used for numerical simulations.
(c) Isoconcentrafion profiles calculated using r2_e profiles and
meshes shown.

dual stripe region allow significant deposition to occur,

with the enhancement decaying to zero far away from the

oxide stripes, as shown in Fig. 9Co). This has the effect of

softening the amount of enhancement between the stripes
to controllabIe levels of less than a factor of two or three.

Extensive numerical modeling of the selective area epi-
taxy process has been reported. The kinds of information

that can be obtained are outlined in Figs. 10 and 11 [74],
[75], [82]. Fig. 10(a) shows the basic unit-cen cross section

for the dual stripe pattern of Fig. 9. At some point well
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Fig. IL Selective growth-tree profile of C,aAs normalized to the
background (unmasked) growth rate for two samples having a
4-/am openingbetweenstripesand oxidemask stripewidthsof
6/am (solidline)and 25/am (dashedline).
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above the substrate at the edge of the boundary layer,

the concentration of the constituent species is constant and
equal to the supply rate. The unit cell must be chosen to be
wide enough, in terms of effective diffusion lengths, that
the slope of the concentration everywhere along the sides

is zero. Since no deposition takes place on the oxide mask,
the slope of the concentration must be zero at the mask
surfaces. The slope everywhere else along the surface is

the growth rate and is necessarily a function of position.
An example of the computational mesh that is used for
numerical simulations is shown in Fig. 10Co). To optimize

computation time and accuracy in the regions of greatest
interest, the density of the mesh is designed to be greatest
nearest the surface and between the oxide mask stripes. The
results of such a simulation are shown in Fig. 10(c). These

are isoconcentration profiles, which show pronounced lat-
eral concentration gradients away from the center of the
oxide mask stripes and toward the unmasked regions.

More immediately relevant information can be obtained
from Fig. 1 I, which is the selective growth-rote profile of
GaAs, normalized to the background (unmasked) growth

rate, for two samples having a 4.-/_m opening between
stripes and oxide mask stripe widths of 6 and 25/_m. These
data are taken from the slope of the concentration data at the

surface of Fig. 10(c). The wings of Fig. 11 show that the
effective diffusion length is tens of micrometers and much
larger than the stripe opening width. The model indicates

lessthana I% thicknessvariationinthe stripeopening.

Experimentally, none is observed. The range of growth-rate
enhancement is from one to three times. Consider a base

quantum-well thickness of 50 _. The SAE process would

then give a controllable quantum-well thickness in the range
of up to roughly 150 ,_, which should be adequate for most

photonic device designs. Note that the oxide mask stripe
widths are well within the range of conventional optical
lithography, and no special precision is required.
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Fig. 12. Scanningelectronmicrographof thecrosssectionof a
buriedheterosu'ucmrelasergrownby SAE.

B. Optoelectronic Devices by SAE

The basic element for SAE integrated photonic devices

is the buried heterostructure laser. A scanning electron

micrograph of the cross section of such a buried heterostruc-
ture laser is shown in Fig. 12. In spite of the midgrowth
processing steps and regrowth interfaces, these lasers are of

remarkably high quality. The lateral waveguide is formed
by the stripe opening, and the emission wavelength is de-
fined by the base quantum-well thickness and composition
along with the oxide mask stripe width. Any laser emission
wavelength, or multiple wavelengths, can be chosen within

a single growth run on the same wafer by simply adjusting
the oxide mask stripe width. The kinds of ranges available
from this process are shown in Fig. 13 [72], [75], which
shows the emission wavelength versus oxide mask stripe

width for both long-wavelength [1.55/Jm, Fig. 13(a)] and
shorter wavelength [980 nrn, Fig. 13(b)] SAE lasers. By
simply defining the oxide mask stripe width appropriately

anywhere on the wafer and including appropriate biases and
electrical isolation, the wavelength can be adjusted to form
red-shifted detectors, slightly blue-shifted electroabsorption
(EA) modulators, or transparent routing structures.

One example of an integrated device formed in this
manner, a laser-modulator element [85], is shown schemat-

ically in Fig. 14. The longitudinal cross section is shown
in Fig. 14(a), and the corresponding mask pattern is shown

in Fig. 14(b). The laser section is formed where the oxide
mask stripe width is largest, and a slightly narrower mask
width is used to form a blue-shifted EA modulator, which

will be transparent at zero bias. The laser resonator is
formed by a cleaved and coated facet and a distributed

Bragg reflector grating. Several of these elements can be
connected with transparent routing structures and F-junction
couplers to form a monolithic integrated multiwavelength

single-output transmitter.

VI. SUMMARY

We have attempted to capture the essence of the MOCVD

process for deposition of compound semiconductors and
alloys by considering the basic chemical reaction equation
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Fig. 13. Emission wavelength versus oxide mask slripe width for
long-wavelength (1.55 /_rn) (after [72]) and shorter wavelength
(980 nm) SAE lasers (after [75]).
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Fig. 14. An integrated laser-modulator element formed by SAE.
(a) Longitudinal cross section. (b) Corresponding mask pattern.

and then extending to more complex situations, such as

all-alkyl processes and alloys. The hardware comprising
MOCVD reactors has been described, including the reactor

gas delivery system, the reaction chamber, and the reactor
safety infrastructure. We have outlined the basic hydrody-

namic, thermal, and chemical processes and then extracted
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important conclusions about such practical concerns as

growth rate, composition, and heterostrucmre interfaces. We

have generalized the necessary range of photonic device

structure parameters and addressed how well the MOCVD

process fares in meeting the requirements. An important

advance in the growth process that seems likely to have

enormous impact on future integrated photonic devices is

SAE. We have presented an introduction to this process,

which most closely approximates the ideal of a single

growth process that yields any desired structure at any area

on the wafer.

It is worth adding a few words to address the competition

between MOCVD and MBE for designation as the technol-

ogy of choice for the growth of compound semiconductor

heterostructures. These two growth processes, which are

fundamentally very different, appeared and matured at

nearly the same time. Both have proponents that can
articulate the relative advantages and disadvantages of the

respective processes. Two strong conclusions can be made

concerning this competition. The first is that, in the hands

of experts, both processes can produce similar results,

and the limitations are generally those fundamental to

the materials chosen rather than the process utilized. The

second conclusion is that the development of each process

has been accelerated by advances in the other, to the point

where both processes, as well as the technical community

in general, are the better for the competition.
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